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Abstract-In the frame of continuum mechanics elasto-plastic porous solids with their inter
communicating void spaces filled with a viscous fluid and gas can be described as muiticomponent
models. For such models constitutive equations are developed, making full use of the thermo
dynamical restrictions. These constitutive equations are suitable to describe continua with ideal
plastic properties as well as brittle continua.

I. INTRODUCflON

The consideration of fluid- and gas-filled porous solids is of great importance in applied
engineering as well as in the frame of soil mechanics and in describing other loaded porous
structures, such as concrete.

In literature the theory of porous solids with void pores has been subject to an intensive
research for a long time, e.g. publications by Berg[l], Caroll and Holt[2, 3], Green[4] and
Shima and Oyane[5], whereas the theoretical basis of fluid- and gas-filled porous solids
needs further clarification. A first approach to these problems has been done, e.g. by one
of the others in [6].

The present paper concerns the theory of elasto-plastic fluid- and gas-filled porous
continua, thus widening the plasticity theory for fluid-saturated porous solids given by de
Boer and Kowalski[7].

In the frame of continuum mechanics elasto-plastic fluid- and gas-filled porous solids
with their intercommunicating void spaces filled with a viscous fluid and gas can be described
as multicomponent models by the introduction of volume fractions. The constituents of
such models are a solid skeleton and free as well as trapped parts of the media fluid and
gas.

The considered problems have a rather complex character, because the thermo
dynamical behaviour of the different media as well as the transport processes of fluid, gas
and heat have to be analysed in general.

In the frame of the finite theory the problem generally leads to geometrically and
physically nonlinear relations. In order to obtain a possible simple and practical theory
several simplifications will be introduced. To this purpose a statistical distribution of the
components solid skeleton, fluid and gas is assumed. Moreover, the different components
are assumed to share a common temperature with a vanishing temperature gradient.
Furthermore, the considered material is required to be isotropic. In addition, the com
pressibility of the components solid skcleton and fluid is assumed to be much smaller than
the compressibility of the whole body. The stress deviators in the media fluid and gas are
assumed to be negligible in comparison with the stress deviator in the skeleton. Finally, the
development of constitutive equations in the frame of the finite theory is restricted to the
case of small strains and finite rotations.

Considering the introduced limitation of the problem the balance equations and the
fundamental equations of thermodynamics lead to a set ofconstitutive equations for elasto
plastic fluid- and gas-filled porous solids. These constitutive equations are suitable to
describe continua with ideal-plastic properties as well as brittle continua. Concerning the
vector and tensor calculus used in this paper, see [8].

tThe paper was presented at the XVlth IUTAM Congress on Theoretical and Applied Mechanics, 19-25
August, 1984, Lyngby, Denmark.
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2. GENERAL CONSIDERATIONS

In order to state the problem consider a volume element of a porous solid (Fig. 1)
which consists of an elasto-plastic solid skeleton with its intercommunicating and isolated
void spaces filled with a viscous fluid and gas.

The pores of such volume elements are assumed to contain free as well as trapped
parts of the media fluid and gas. The trapped parts, which can adhere as a molecular film
on the side of the pores or may be trapped in isolated pore spaces share a common velocity
with the solid skeleton, whereas the free parts can stream or diffuse through the open pore
space. It is shown in literaturc[9] that classical diffusion and flow problems have a common
mechanical basis, and that in several physical situations diffusion and flow processes do
not affect the macroscopic response of the solid matrix. From a thermodynamical point of
view these facts will also be a partial result ofthis paper. In the following we will not study
the microstructure of the considered medium but treat the mentioned problems in the frame
of continuum mechanics by introducing a multicomponent model. To this purpose it is
convenient to use the indication

( ... )' :

( •• . )Ff and ( )F':

( ... )Gf and ( )GI :

solid skeleton,

free and trapped fluid,

free and trapped gas,

in order to distinguish the mechanical quantities of the different components.
As usual in classical mechanics one chooses a material description for the solid skeleton

and the trapped parts of fluid and gas

x = X(X, t),

v = X(X, t),

whereas the components free fluid and free gas are described by their actual velocities

wF = wF(x, t),

wG=wG(x, t)

(2.1)

(2.2)

with the position vectors x of the actual and X of the reference configuration and the time
t.

isolated pcre space

Fig. J. Basic structure of a porous volume element; pores filled with a viscous fluid and gas.



On the problem of fluid- and gas-filled elasto-plastic solids 1233

Owing to the sharing of a common velocity by the skeleton and the trapped parts of
fluid and gas, these components can be regarded as a comprised continuum so that the
considered multicomponent model consists of three partial continua: the solid skeleton
including the trapped parts of fluid and gas, the free fluid and the free gas. Due to the
different velocity states, different material time derivatives with different convective parts
have to be considered:

. 0( ... )
( ... ) = -at + grad ( ... )·v,

I 0( ... ) d F
( ... ) = -at +gra ( ... )·w ,

v 0( ... ) G
( ... ) =---at+grad( ... )·w .

(2.3)

Assuming a statistical distribution of the media solid skeleton, fluid and gas inside the
considered multi-component model, the demand for the existence of volume fractions

(2.4)

leads to the following representation of the volume Vas the sum of the partial volumes of
the particular components:

V= idv

= i (dvS+ dvF! + dvFt + dvG! + dvGt)

= i(nS+ nF! + nFt + nG! + nGt) dv.

(2.5)

The volume fractions which are assumed to be sufficiently smooth in space-time are con
nected with the classical quantities volume porosity n" (equal to the average surface porosity)
and effective surface porosity Tr"', see, e.g. [10]:

(2.6)

With the true mass densities pi, p~, p~ of the skeleton, the fluid and the gas and the relations
(2.4) and (2.5), the bulk densities with respect to the total volume element dv can be
introduced:

pFf = nFfp~;

pG! = nGfp~;

pS = nSp~,

pFt = nFtp~;

pGt = nGtp~;

pF = nFp~,

pG =nGp'i.

(2.7)

Considering the preceding relations stated additionally to those of the classical continuum
mechanics, the thermomechanical behaviour of fluid- and gas-filled porous solids can be
specified in the following.
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3. BALANCE EQUATIONS

3.1. Conservation ofmass
Within the formulation of mass conservation laws it is assumed that the particular

parts of the total mass-solid skeleton, fluid and gas-do not change during the motion
the body is subject to. For the solid skeleton this assumption is obvious and leads to the
well-known local form

(3.1.1)

For the media fluid and gas, however, this requirement of mass conservation excludes any
mass sources inside the body.

These simplifications lead to the conservation laws

0= tV+pFdivv+div[pFf(wF-v)],

0= pG +pG divv+div [pGf(wG_v)].
(3.1.2)

Assuming the solid skeleton and the fluid to be homogeneous and to be incompressible in
comparison with the whole body, the relations

ap~
at == 0,

are valid.
From (2.4) and (2.5) follows

gradp~ == 0,

gradp~ == 0

(3.1.3)

(3.1.4)

so that (2.7) and (3.1.1 )-(3.1.4) lead to the material time derivatives of the introduced
volume fractions

liS = -nsdivv,

liF= -nFdivv- div[nFf(wF-v)],

liG = (l-nG)divv+div [nFf(wF-v)],

which are needed to describe incremental loading processes.

(3.1.5)

3.2. Equations ofmotion
For the defined three partial continua of the considered multicomponent model differ

ent balance equations of momentum and of moment of momentum have to be stated.
Following this, Cauchy's first law of motion for the skeleton including the trapped

parts of fluid and gas, for the free fluid and for the free gas, yields with respect to the total
volume element dv

div TS - grad pFI - grad pGI + (ps + pFI + pGI)(b _ v) + f SF+ f SG

= (pFI+pFI divv+pG' +pGI divv)v,

-gradpF/+pF/(b-w'F)-fsF = (P'I1+ pF/divwl)wF,

-gradpG/+pGf(b_wVG)_fSG = (pVG/+pG/divwG)wG.

(3.2.1)
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In these equations, in which the deviatoric parts of the stress states in the media fluid
and gas as well as the viscous properties inside the fluid are neglected-an admissible
simplification for physical situations with sufficiently slow flow processes-b denotes the
body forces per unit mass and TS = nST~ (with the true Cauchy stress T~) Cauchy's stress
tensor in the solid skeleton defined as the sum of the stress tensor fS and the partial
hydrostatic pressure imposed on the skeleton:

(3.2.2)

In soil mechanics fS is usually defined as the stress tensor caused by contact forces between
the grains of granular materials. The symmetry TS = (TS)T follows from Cauchy's second
law of motion, assuming that there exists no moment of momentum supply in contrast to
the usual definitions in the theory ofmixtures[ll]. The quantities pFf, pF/, pGI and pG/ signify
the relative hydrostatic pressures of the free and trapped parts of the media fluid and gas:

etc. (3.2.3)

The momentum supplies fSF and fSG represent the interacting forces caused by friction and
diffusion effects between the skeleton, including the trapped parts of fluid and gas and the
free fluid or the free gas, respectively. An interacting force between the free fluid and the
free gas is assumed to be small and therefore negligible. Capillary stresses which might be
treated as surface forces are also neglected in this paper, but see, e.g. [6].

4. THERMODYNAMICAL RESTRICTIONS

The partial continua of the considered multicomponent model are assumed to be
thermodynamical units with a mutual exchange of heat and work. Therefore, the energy
balance equations for the solid skeleton with the trapped parts of fluid and gas, for the free
fluid and the free gas, are

E+K = W+Q+1edv,

E'f'/+K'FI = W'Ff+Q'FI+1eFfdv,

EVGI+ KVGf = WVGf+ QVGI+1eGfdv,

(4.1)

where E denotes the internal energy, K the kinetic energy, W the mechanical work, Q the
heat and e the local energy supply terms of the partial continua satisfying the condition
e+eF1+ eG1 = O. The energy balance equation of the total continuum yields from the sum
of eqns (4.1) and will be restricted to those physical situations for which the following
assumptions are valid:

(1) the partial continua have an identical temperature state,
(2) there exists a homogeneous distribution of the absolute temperature 8: grad 8 = 0,

(3) there exists no exchange between the free and trapped parts of the media fluid and
gas so that the mass continuity equations (3.1.2) become

0= p'FI+ pFIdivwF ;

0= pVGI+pGfdivwG;

0= pF'+pF'divv,

0= pGI+pG1divv.
(4.2)
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Following this, the local form of the energy balance equation of the total continuum is

pSf.S+ pFf.F + pGf.G + pFI grad rfl. (wF -v)+ pGI grad cGI • (wG-v)

= f· D_pFI divwF _pGIdivwG+fsF • (wF -v)

+(SU. (WI;. v)+ pSr'· + pf·,t" + pli,U -div (qS +qf+qli) (4.3)

with

D =-!(grad v+gradTv), (4.4)

where 8 is the specific internal energy, r the supply of heat and q the heat flux vector of the
particular components, each quantity referred to the total volume element dv. Besides the
classical terms rate of internal energy, rate of mechanical work and thermal quantities
the influence of the work achieved by the interacting forces enters the energy balance
equation.

The entropy inequality for the total continuum is

with the entropies

H = i (ps'1s+pFI'1F+ pGI'1G) dv,

HFI = i pFI'1Fdv,

HGI =i pGI'1Gdv.

(4.6)

In (4.6), '1 denotes the specific entropy of the particular components.
Using the specific free energy function'" for the particular components the inequality

(4.5) yields

- pS(y,s +~'1S)- pF(y,F+ ~'1F) _ pG(y,G + ~'1G)

_pFIgrad ",Fl. (wF -v)- pGI grad "'GI. (wG-v)

+ f .D - pFIdiv wF - pOI div wG

+fSF • (wF -.v)+fSG . (wG-v) ;ll: 0, (4.7)

where the quantities div wF and div wGcan be replaced by the mass continuity equations
(3.1.2).

Assuming the decomposition of the stretching D and the corresponding strain rate E
into an elastic and an inelastic part

D = D.+D;,

with E. = Fro.F,

E; = Fro;F,

(4.8)
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- pS(ifJs + ~J1S) - pF(ifJF+~J1F)- pG(ifJG +~J1G)

+ (;:~grad pFf - pFf grad ljIFf). (wF -v)

+TS'D +TS'D+pFPF +pGPG
• I pF pG

+fSF • (wF _v)+fSG • (wG -v) ~ O.
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(4.9)

This form of the entropy inequality can be used as a thermodynamical restriction for the
development of constitutive equations of the considered multicomponent medium.

5. CONSTITUTIVE EQUATIONS

5.1. General relations
Within the formulation of constitutive assumptions in the frame of the finite theory

the solid skeleton is assumed to be isotropic with a dissipating part of the free energy as a
result of plastic deformations and of flow and diffusion processes. Then, the increase of the
temperature can be a measure for the energy dissipation. Considering Noll's postulates
determinism, local action and material frame-indifference it can be shown (see, e.g. [12])
that the specific free energy of the skeleton is a function of the invariants of the elastic part
of Green's deformation tensor B and the temperature 8 as far as other internal variables
are assumed to be negligible:

(5.1.1 )

In this paper the specific free energies of the media fluid and gas are assumed to be a
function of the temperature state and the bulk densities only, thereby neglecting the viscous
properties inside the fluid as well as other internal variables which might be stated to
describe constitutive interaction between the particular components. The consideration of
such variables is possible but is not discussed in this paper:

ljIF = .;iF(8, pF); ifJF = a.;iF(8,pF) ~+ a.;iF(8,pF) 'F
af) ap/" p,

ifJG _ a.;iG(O, pG) () a.;iG(O, pG) 'G
(5.1.2)

ljIG = .;iG(O, pG); - a8 + apG p

and

ljIFf = .;il'l(8, pFf);
a.;iFf(f) pFf)

grad ljIFf = op;f grad pFf,

a.;iGf(f) pGf)
(5.1.3)

ljIGf = ~Gf(8, pGf); grad ljIGf = ap~f grad pGf.



1238 R. Ill. BOER ANIl W EflLFI{S

With the help of (5.1.1 )-(5.1.3) the inequality (4.9) becomes

(5.1.4)

Equation (5.1.4) must hold in each point for any arbitrary process. Then, from (5.1.4) the
following constitutive relations are valid:

(5.1.5)

Using (5.1.5) the rate of dissipative energy as a reduced form of the entropy inequality
(5.1.4) yields

(5.1.6)

From (5.1.6) the following restrictions for the rate of inelastic energy and the interacting
forces hold:

resp. SS. Ej ~ 0,

f SF • (wF -v) ~ 0,

(SG. (wCi-v) ~ o.
(5.1.7)

SS denotes the second Piola-Kirchhoff stress tensor of the skeleton corresponding to
TS. By satisfying the last two restrictions sufficiently linear constitutive relations for the
interacting forces can be found:

(SF = A(wF -v),

fSG = B(wG -v),

A positive definite,

B positive definite.
(5.1.8)

The quantities A and B are material tensors. Omitting the body forces the insertion of
(5.1.8) and (4.2) into (3.2.lh resp. (3.2.1)3 yields in case of isotropic mechanical behaviour
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the general forms of Darcy's filter law and rick's /lrst dilrusion law,
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1 "fwF - V = - - grad pf ,
a

a ~ 0,

b ~ 0,

(5.1.9)

with the material parameters a and b.
From these representations it is clear that classical resp. linear flow and diffusion

problems have a common mechanical basis and considering the preceding constitutive
assumptions flow and diffusion processes do not affect the response of the skeleton; see,
e.g. [9].

For a homogeneous distributed (grad nFI = 0) free fluid Darcy's law becomes

yFI
k=-,

a
i = -gradh, (5.1.10)

where k denotes the coefficient of permeability, i the hydraulic gradient, yFI the relative
specific weight and h the pressure head of the free fluid.

Fick's first diffusion law for an ideal free gas can be written as

j = - 15 (pGI) grad pGI, j = pGI(wG-v),

15 (pGI) = R()pGI,
b

(5.1.11)

with the diffusive flux vector j and the diffusivity D, in which R is the gas constant. Fick's
second diffusion law

a GI
...!!- = Dl:!pGIat (l:!: Laplace operator) (5.1.12)

results from (5.1.11) and the mass continuity equation for the component free gas (see
(4.2» assuming D to be a constant and the velocity v to be identically zero.

5.2. Elastic material properties
The general constitutive equation (5.1.5)1 for an isotropic solid skeleton can be

represented by the theorem

(5.2.1)

see [13], where the coefficients lfJo, lfJ I and lfJ2 are isotropic functions of B. In this representa
tion, valid in frame of the finite theory, the included material properties cannot be specified
sufficiently by tensile and shear tests to describe three dimensional material behaviour.
Therefore, the following is restricted to the theory of small strains and finite rotations.
Within this theory the free energy ",S of the skeleton can be developed near the natural
state, which is taken as the undistorted reference configuration, into Taylor's series.

The result of this procedure (see e.g. [12]) are the constitutive equations

(5.2.2)

where ()o is the temperature of the reference state.
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(5.2.3)

is needed to describe elasto-plastic material properties in terms of the reference configur
4

ation. The fourth order material tensor B, and the material tensor G, are defined by

4 4

B, = n~D,;

G, = n~C,;

4 4

D, = 2Jd, +A(I ® I),

C. =ex,I.
(5.2.4)

4

In (5.2.4), n~ stands for the volume fraction of the skeleton in the natural state, D, for
Hooke's law with the Lame constants J.I. and ), and ext for the coefficient of thermal

4
expansion. The quantity I represents the fourth order identity.

5.3. Plastic material properties
In order to describe ideal-plastic or brittle material properties of fluid- and gas-filled

porous solids the scalar-valued tensor function

(5.3.1)

can be introduced representing a yield as well as a failure condition for the considered
material. This equation, in which J2 denotes the second invariant of the stress deviator of
the skeleton, contains the positive material parameters ex, fJ and K, which serve to adapt the
yield condition to the experimental results.

The proposed yield condition contains several special cases:

(1) If ex and fJ are equal to zero, (5.3.1) turns into the well-known yield condition of
von Mises,

(2) If only fJ is equal to zero, (5.3.1) changes into a condition which is suitable to
describe the yield point of ductile materials with volume strains in the plastic region. Such
a condition has been proposed by de Boer and Kowalski[7] to describe the yield point of
fluid-saturated porous solids.

(3) If only ex is equal to zero, (5.3.1) yields the form proposed by Drucker and
Prager[14], which represents a generalization of Mohr's and Coulomb's condition in soil
mechanics.

At this point it should be noticed that using (5.3.1) the solid matrix of the considered
material must stay coherent without any separating fracture as far as the methods of the
plasticity theory shall be used. This holds for ductile as well as for many granular and brittle
media. For example, during the failure process sandy-like soils show certain strata in which
the grains are rolling one upon the other. During the loading process of brittle materials
like concrete, there first occur single cracks in several regions, These cracks widen until the
failure of the structure takes place, whereby the occurring failure regions are similar to
those of soils.

Furthermore, it is worth noting that (5.3.1) is of hyperbolic type, which can easily be
shown by writing this condition as a function of .ji2 as far as the condition fJ2 - ~ex2 > 0
is fulfilled:

(5.3.2)

In order to give an example for the validity of the proposed yield function consider Fig. 2,
which shows the failure condition of concrete established by experiments of Mills and
Zimmermann[15]. This curve is referred to the prism strength incompression fJp ofconcrete,
fJp being a function of the concrete strength as well as the porosity and the shape of the
respective specimens. Thus, Fig. 2 is independent of these quantities.
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Fig. 2. Failure condition for concrete; material parameters IX =0.05, fJ =0.68, KIP, =0.47.

Determining the material constants (X = 0.05, {J = 0.68 and KI{J, =0.47, Fig. 2 can be
approximated nearly identically with the proposed failure function.

According to the concept of plastic potential the inelastic strain rate Ej corresponding
to the yield condition (5.3.1) yields in case of ideal-plastic materials

(5.3.3)

with the loading criteria

neutral state;

unloading;
(5.3.4)

From (5.3.1), (5.3.3) and the restriction (5.1.7)1 J.. can be specified to be a positive scalar
valued function in the neutral state (loading for ideal-plastic solids) or to be zero in case of
unloading:

(5.3.5)

Expressing;' by the material parameters (X and {J and the inelastic strain rates one obtains:

(5.3.6)

Equation (5.3.6) represents an important expression, especially with regard to the theory
of limit design.

5.4. Elasurplastic material properties
In order to describe elasto-plastic material properties of the solid skeleton we take the

usual way (see, e.g. [12]), deriving the constitutive equation with respect to the decomposition
of the strain rates (4.8).

SAS 22: 11-P
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The result of this procedure is

(5.4.1 )

(5.4.2)

4

where the quantities B" G. and iJ<p/iJSs can be substituted by (5.2.4) and (5.3.3). The second
4

terms of the material tensors Band G only appear for ideal-plastic materials in case of
loading. For brittle materials (e.g. concrete under tension) and ideal-plastic materials in

4 4
case of unloading we have B = B. and G = Ge •

6. FINAL REMARKS

In this paper it has been shown that the balance equations and the thermodynamical
restrictions lead to Darcy's well-known filter law and Fick's diffusion laws as well as to
constitutive equations for fluid- and gas-filled elasto-plastic porous solids. The constitutive
equation of the solid skeleton as well as the yield condition contain the hydrostatic pressure
imposed on the whole body as a part of the stress tensor SS. An extension of the presented
constitutive equations to those physical situations where constitutive interaction of the
media solid skeleton, fluid and gas plays a dominant role is possible.
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